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Abstract. Motivated by the problem ofN -coupled Hubbard chains, we investigate a
generalization of a recent model containing two species of one-dimensional fermions interacting
via a gauge field that depends on the positions of all the particles of the other species. The exact
many-body ground state of the model can be easily obtained through a unitary transformation of
the model. The correlation functions are Luttinger like—i.e., they decay through power laws with
non-integer exponents. Through the interaction-dependent two-particle correlation functions, we
identify the relevant perturbations and hence, possible instabilities. Interestingly, forN > 2 bands,
beyond a critical strength of the interaction, the dominant incipient instability changes.

Exactly solvable models [1–3]§ have always attracted a lot of interest in theoretical physics,
because they serve as paradigms for more complicated systems. The fact that these
models are usually in one dimension no longer makes them unrealistic, however, since
current technological advances have seen the advent of many semi-artificial one-dimensional
systems, such as quantum wires, quantum Hall bars, one-dimensional organic metals and one-
dimensional spin chains‖. In fact, phenomena such as one-dimensional Luttinger liquids and
the Haldane gap in spin chain models have actually been seen experimentally [5]. Besides their
role in these systems, exactly solvable models have played a very important role as a reliable
test for various approximation methods and for developing qualitative understanding [6].

However, for two or more dimensions, there have been very few exact results. For instance,
the large-U Hubbard model has been studied using several approximation schemes [7], none
of which have led to completely reliable results. In recent years, there have been attempts to
understand two dimensions through the coupling of one-dimensional chains. Both coupled
spin chains [8] and coupled Hubbard models [9] with interchain hopping and interchain
interactions have been studied using a variety of different schemes such as weak coupling
renormalization group techniques and bosonization [10], exact numerical diagonalizations
[11], etc. Unfortunately, in the absence of any exact results, the interpretation of the results of
these inter-chain coupling studies has remained difficult [12].

In this paper, with the motivation of approaching two-dimensional phenomena through the
coupling of one-dimensional chains, we study a generalization of a class of models [13,14] that
can be diagonalized by a pseudo-unitary transformation and still exhibit non-trivial Luttinger

§ For a review and further references, see [4,6].
‖ For a recent introduction to one-dimensional systems, see [4].
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liquid behaviour. Our model has two species of particles with pseudo-spin indexσ = ±, at
the positionsxσi and with momentapσi , with a Hamiltonian given by

H =
N∑
I

∑
σ i

aI (5σi)
2I . (1)

Here,5σi = pσi + σAσ (xσi) is the ‘covariant momentum’ introduced in [14] andN is a
‘band index’. We have chosen to have only even powers of the covariant momentum in the
Hamiltonian, although positivity of energy only requires that the largest power of the covariant
momentum be even. This maintains the symmetryx → −x or parity, which simplifies the
presentation of the calculations, although the result goes through even when we include odd
powers of the momenta. As explained in [14], particles interact via a gauge potential, given for
the particle at the positionx byAσ (x) =

∑
j V (x− x−σj )—i.e., the potential for the particles

with positive pseudo-spin is due to the presence of the particles with negative pseudo-spin
and vice versa. Note that the potential depends onall the particles of the opposite sign of
pseudo-spin irrespective of the number of bands. (It is also possible to construct models where
the potential only depends on the positions of the particles on nearest-neighbour chains.) The
potential is chosen to be an even function, vanishes at infinity and explicitly breaks time-reversal
invariance, although it is invariant under a combined operation of time reversal and reversal
of pseudospin index. We have generalized the model in [14] by including a band index and
allowing higher powers of the covariant momentum in the Hamiltonian. Our model reduces
to the Schulz–Shastry model forI = 1 anda1 = 1. Clearly, theaI are not dimensionless, and
in fact, explicitly contain a scale3 (except fora1, which is dimensionless).

As noted by the authors in [14], the same pseudo-unitary transformation that they use to
diagonalize their Hamiltonian,

eiS({x+i },{x−i })pσie−iS({x+i },{x−i }) = pσi − ∂xσi S({x+i}, {x−i}) (2)

diagonalizes any power of5σi , as long as we choose the functionS (a function of the 2n
positions of the particles) to eliminate the interaction in equation (1). Thus, we obtain the
transformed Hamiltonian given by

H̃ = eiS({x+i },{x−i })He−iS({x+i },{x−i }) =
∑
σ i

N∑
I

aI (pσi)
2I =

∑
σ i

Hσi (3)

where the interaction pieces have been removed by the transformation. However, the
eigenvalues and eigenfunctions are not the same as those for a genuinely non-interacting
Hamiltonian because the boundary conditions on the wavefunctions are now different.

For the single-particle HamiltonianHσi in equation (3), the eigenvalue equation is a 2N th
order differential equation, and depending on the energy chosen, will have at most 2N different
solutions. The general solution is given by

ψ̃ =
N∑
I

cIe
ikI x + h.c. (4)

where thekI are known in terms ofE and theN − 1 constantsaI (we always chooseaN = 1
without loss of generality since it only sets the overall scale). However, not allkI need be
integer multiples of 2π/L, whereL is the size of the system. For those that are not, the
correspondingcI vanish so as to make the wavefunction periodic inL. Since theaI are fixed,
we may choose only one of thekI to be independent, sayk, which in turn fixes the dispersion
to be

E(k) =
N∑
I

aI (k
2)2I . (5)
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The Fermi points are the roots of the equationE(k) = EF . We choose an energyEF where
the 2N roots{−bI , bI } are all real and distinct (withb1 < b2 < · · · < bN ). The Fermi points
{−FI , FI } are given byFI = 2π [rI ]/L wherebI = 2πrI /L and [ri ] stands for the largest
integer belowrI .

Note that the physics described by anN -band model is similar to the physics described
by anN -chain model in the following way. For theN -chain model, first the kinetic energy is
diagonalized. By putting periodic or open boundary conditions in the direction perpendicular
to the chain,N quantized values ofky , the momentum perpendicular to the chain direction is
obtained and theseN values are used to label theN bands or theN dispersion relations [10].
The filling of these bands up to the Fermi level defines the set of 2N Fermi points±kIF . Thus,
anN -chain model is similar to anN -band model. However, the two models differ in that an
N -band model only has a single dispersion (equation (5)). It gets its 2N Fermi points because
the dispersion is not quadratic and hasN wells (unlike the usual quadratic dispersion which has
one well per band). Hence, the physics described by theN -band model is similar to that of the
N -chain model, but not the same. In particular, the interplay between interchain hopping and
intrachain interactions is not well represented here, because here we only have the dispersion
and interactions within the chain.

We are interested in the solution of the original Hamiltonian in equation (1) and not
the transformed Hamiltonian in equation (3). Although the single-particle energies of
the two Hamiltonians are the same, their wavefunctions are related by the pseudo-unitary
transformationψ = e−iSψ̃ , whereS was chosen to cancel the interaction and is of the form

S({x+i}, {x−i}) =
∑
i,j

E(x+i − x−j ) where E(x) =
∫ x

0
dx ′ V (x ′). (6)

We can compute the difference betweenS(x−i = L) andS(x−i = 0) for any particular negative
pseudo-spin coordinatex−i as

S(x−i = L)− S(x−i = 0) =
∑
j

[E(x+j − L)− E(x+j )] (7)

= nT+
∫ L

0
V (x) dx ≡ nT+ δ (8)

in terms of a phase shiftδ andnT+ which is the total number of positive pseudo-spin particles.
One gets a similar result if we choose the reference particle to be a positive pseudo-spin particle,
with the only difference thatnT+ gets replaced bynT− andδ by −δ. Hence the quantization
condition on the wavenumbers of the particles becomes

Lk±i ∓ nT∓δ = 2πn±i (9)

where then±i are integer quantum numbers analogous to those used in the non-interacting
case. Since, in general,nT∓δ 6= integral multiple of 2π , the free Hamiltonian and the interacting
Hamiltonian are in different Hilbert spaces.

So far, all the arguments used by Schulz and Shastry have gone through for our model
as well. The differences begin when we try to construct the many-body ground state and
the spectrum of low-energy excitations. For ease of presentation, we will now specialize
to the two-band case, explicitly perform the calculations leading to the low-energy effective
Hamiltonian, and then generalize to the case ofN bands.

For the two-band case, the single-particle dispersion is given by

H̃ = eiSHe−iS =
∑
iσ

a4p
4
σ i + a2p

2
σ i (10)

wherea4 = 32 has length dimension two anda2 = −1 is dimensionless. As mentioned before,
we restrict the Fermi level to lie within the double well—i.e., we have four distinct Fermi points
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Figure 1. Dispersion for the two-band model. For the Fermi energyEF , the two bands are denoted
by dotted indices (band 1) and full curve (band 2).(−F2, F1) are clearly left-mover Fermi points
and (−F1, F2) are right-mover Fermi points. The inset shows the dispersion of the three-band
model, with left-mover branches denoted by full curves and right-mover branches denoted by
dotted curves.

(−F2,−F1) on the left and (F1, F2) on the right. For each energy, the degeneracy is either four
or two, depending on whether or not bothk1 andk2 satisfies the boundary condition given in
equation (9). However, all that really matters is that energy levels in both the wells below the
Fermi level are filled. Let us assume that in band 1, there aren1 states below the Fermi level
and in band 2, there aren2 states below the Fermi level for both pseudo-spins. The ground
state energy is then given by

Egs = 2
∑
σ=±

n2∑
i=−n1

[h1i
4 − h2i

2] (11)

whereh1 = 32( 2π
L
)4 andh2 = ( 2π

L
)2. We have assumed thatnT±δ/2π is an integer and the

factor of two takes care of the contributions from both the right- and left-moving sectors. (Note
that the states on the right branches of both the wells are right movers, whereas the states on
the left branches of both wells are left movers. See figure 1.)

The second-order fluctuation in the energy due to the addition ofnR±I andnL±I particles
for the right and left movers can also be computed. It is given by

E(2) =
[∑
±

(n2+nR±2)∑
−(n1−nR±1)

[h1(i + c∓)4 − h2(i + c∓)2] + R −→ L

]
2

(12)

=
2∑
I

∑
±

[h1f1(nI ) + h2f2(nI )](nR±I − c∓)2 (13)



Exactly solvable fermionicN -band models 4347

=
∑
±

2∑
I

g(nI )[J±I ± n∓δ/2π)2 + (n±I )2] (14)

wherecσ = nTσ δ/2π in the first row and the subscript 2 is to indicate that we keep only terms
up to quadratic order in the fluctuations. In the second row,f1(nI ) = nI (nI + 1)(2nI + 1)
andf2 = nI + 1

2, and in the third row, we have defined the currentJ±I = nR±I − nL±I , the
chargen±I = nR±I + nL±I and the ‘density’g(nI ) = h1f1(nI ) + h2f2(nI ). The total charge
is clearlynT± = n±1 + n±2. Note, however, that unlike the Schulz–Shastry model, here fourth-
order fluctuations do exist, which we neglect because we are only interested in low-energy
fluctuations.

We bosonize as in the single-band case by introducing boson fieldsφ±I with their conjugate
momenta5±I . These are related to the currents and charge densities as

n±I = L√
π
∂xφ±I (15)

J±I = − L√
π
5±I . (16)

(We use the notation of the first reference in [15].) To rewrite the effective Hamiltonian for
the low-energy fluctuations in terms of the boson fields, we have to identify the function
g(nI )L/2π = ρI as an effective density after which we obtain

H =
2∑
I

∑
±

∫
dx ρI

{[
−5I± ± δ

π
(∂xφ1∓ + ∂xφ2∓)

]2

+ (∂xφ±I )2
}
. (17)

But interestingly, althoughρI contains information about the scale, the low energy effective
Hamiltonian is scale invariant—there are no mass terms (or cosine terms leading to mass terms)
for the boson fields. A similar redefinition of variables as in the one-band case,

φ̃±I = φ±I 5̃±I = 5±I ∓ δ

π
(∂xφ∓1 + ∂xφ∓2) (18)

leads to a non-interacting form of the Hamiltonian given by

H =
2∑
I

∑
±

∫
dx ρI [(5̃±I )2 + (∂xφ̃±I )2]. (19)

Thus the correlators of the tilde fields are just free-field correlators. In terms of the non-
tilde bosonic variables or equivalently in terms of the fermion fields, the Hamiltonian is not
non-interacting. However, since they are explicitly known in terms of the free fields, their
correlators can also be explicitly calculated.

In fact, at this stage, the generalization toN bands is obvious. The single-particle
dispersion of theN -band model hasN wells and 2N Fermi points. The Hamiltonian for
quadratic fluctuations about the Fermi points is precisely the same as that in equation (17) with
the replacement

(∂xφ∓1 + ∂xφ∓2)→
N∑
J

∂xφ∓J . (20)

As before, the redefinition ofφI and5I in terms of the tilde fields leads to the non-interacting
form of the Hamiltonian in equation (19) with the sum going over allN bands.

We can now compute correlation functions using the representation for the fermion
operators in terms of the non-interacting boson fields given by

ψR±I = exp

{
i

(
φR±I ∓ δ

2π

N∑
I

φ∓I

)}
(21)
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Table 1. Two-particle correlations.

TPO η TPO(I 6= J ) η2

ψ
†
R±I ψL±J 2 ψ

†
Z±I ψZ±J 2

(
1 +N δ2

π2

)
ψ

†
R±I ψL∓J 2

(
1∓ δ

π

)
+N δ2

π2 ψ
†
Z±I ψZ∓J 2

(
1 + Nδ2

2π2

)
ψR±I ψL±J 2

(
1 +N δ2

π2

)
ψZ±I ψZ±J 2

ψR±I ψL∓J 2
(
1± δ

π

)
+N δ2

π2 ψZ±I ψZ∓J 2
(
1 + Nδ2

2π2

)

ψL±I = exp

{
− i

(
φL±I ± δ

2π

N∑
I

φ∓I

)}
. (22)

(We follow the notation in [15] and defineφR±I = 1
2(φ±I −

∫ x
−∞5±I (x

′) dx ′) andφL±I =
1
2(φ±I +

∫ x
−∞5±I (x

′) dx ′).) The one-particle correlation function is given by

GZ±I (x) = 〈ψZ±I (x)ψ†
Z±I (0)〉 ∼ x−η (23)

with η = 1 +N(δ2/2π2) for both right and left movers (Z = R/L), for both pseudo-spins
and for allI . As in the one-band case, the fermion has an anomalous dimension given by
η 6= integer. This is the indication that the system is a Luttinger liquid and not a Fermi
liquid. The interesting point to note here is the dependence of the anomalous dimension on
the number of chains. The model is not just a collection of one-band Luttinger liquids—there
exists a genuine dependence on the number of bands.

To study the incipient instabilities of the model, we need to compute the anomalous
dimensions of multi-particle operators. Naive power counting using the engineering dimension
of the fermion field as12, gives the engineering dimension of anyM-particle operator correlation

function〈OMO
†
M〉 as 2M/2= M. Hence, without interactions, one would expect two-particle

operators (TPOs) to be marginal and all higher-particle operators to be irrelevant. However,
with interactions, it is clearly possible for some TPOs or even higher-particle operators to
become relevant. Hence, to study incipient instabilities, we need to compute the anomalous
dimensions of all possible operators. ForN -chains, one can include up to 4N -particle operators
(because each particle can be left or right moving and can be of the + or− type) without violating
the Pauli exclusion principle. However, generally the lower-point functions tend to be more
relevant and hence lead to more likely ground states.

Hence, let us first compute exponents of the TPOs. In the one-band case, the only non-
trivial two-particle correlations involved excitations at both the right and left Fermi points,
because these were the only two Fermi points. Here, however, we can have non-trivial two-
particle correlations involving excitations at two right Fermi points and two left Fermi points
as well. These exponents for the two-particle correlations are tabulated in table 1.

Fortunately, they are independent of the band index and only depend on whether they
involve both right and left Fermi points or right (left) movers at both Fermi points. Interestingly,
none of the RR or LL exponents lead to relevant perturbations. This is in agreement with the
weak coupling RG approach [16], where there is a non-zero contribution to the four-point vertex
only when there is momentum transfer between left and right Fermi points. In the single-chain
case considered in [16], there was no possibility of momentum transfers between two Fermi
points on the left or two on the right, since the model only had one on each side. However, even
in the more general case ofN left-moving Fermi points andN right-moving Fermi points [17],
graphs involving loop momenta in two left-moving shells or two right-moving shells are always
zero, because the energies have the same sign and the contour integral for the energy vanishes.
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For positiveδ, the favoured relevant perturbations are

ψ
†
R+IψL−J η = 1 + (1− δ/π)2 + (N − 1)δ2/π2

ψR−IψL+J η = 1 + (1− δ/π)2 + (N − 1)δ2/π2.
(24)

Clearly as the number of chains increases, the exponent increases, until at some critical value
of N = Nc ∝ 1/δ, both the operators above cease to be relevant. Similarly, for negativeδ, the
most favoured relevant perturbations are

ψ
†
R−IψL+J η = 1 + (1 + δ/π)2 + (N − 1)δ2/π2

ψR+IψL−J η = 1 + (1 + δ/π)2 + (N − 1)δ2/π2 (25)

which again cease to be relevant beyondNc. Note also that even before the operator ceases
to be relevant, it ceases to be the most favoured relevant operator. Beyondδc/π = 2/N , the
charged density wave-like operatorψ†

R±IψL±J becomes the most relevant operator.
What about higher-particle operators? Are they always less relevant than the TPOs? To

check that, we computed the anomalous dimensions of the various three- and four-particle
operators and checked that they never become more relevant thanall the TPOs for anyδ/π
between zero and one. Hence, the dominant incipient instability is still one of the ground
states determined by a two-particle perturbation. The instabilities characterized by the various
two-body operators have been studied before and will lead to the usual charged density wave,
spin density wave, triplet superconductor or singlet superconductor states.

Let us compare our results with the results obtained by giving additional internal degrees
of freedom to theσ = ± particles [14]. If we assume that they occur inm flavours, then the
Hamiltonian is just

H =
m∑
I=1

∑
σ i

aI (5Iσi)
2. (26)

Surprisingly, an analogous calculation leads precisely to the same exponents as in
equations (24) and (25) withN replaced bym. However, in this case, there genuinely exist 2m

degrees of freedom, and the various two-particle correlators have physical meaning.I = J
give two-particle correlators of theI th particle, whereasI 6= J give correlations between two
different flavours. The exponents are actually independent of the particle index because of the
internal symmetry. For our Hamiltonian in equation (1), however, there are only two degrees
of freedom correponding to theσ = ± particles. It is only after linearizing around the different
Fermi points and assuming that each of the linearized fermions can be bosonized independently
that we haveN independent right- and left-moving fermions or bosons, whose correlators can
be computed independently. For the original fermions, the only relevant charges arenT± and
the relevant currents areJ± =

∑
I (nR±I − nL±I ).

Many of the issues in coupled chain models, however, remain unaddressed in this rather
simple model, which is perhaps better thought of as a single-chain model with a more
complicated band structure. To really apply this model toN -chains, one would have to modify
the model, so that there is some analogue of the interplay between interchain hopping and
intrachain interactions. However, note that even as anN -band model, it is not trivial that the
correlation functions are identical to those of them-flavour model.

In conclusion, we have studied a general model with 2N Fermi points, (anN -band model),
which is exactly solvable and has non-trivial Luttinger liquid behaviour. We computed the
exponents of the various TPOs and found the possible relevant perturbations. Interestingly,
we found that the exponents have non-trivial dependence on the number of bands—they are
not merely additive. ForN > 2, we found that for sufficiently largeδ > δc = 2π/N , the
dominant incipient instability changes to being CDW like from being SDW like at weakδ.
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An interesting exercise would be to see if this model can be effectively generalized to higher
dimensions. In that case, it would be a good starting point to study possible Luttinger liquid
ground states in higher dimensions.
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